3 Real World Applications of Propane Fuel Cells

Uncrewed aerial vehicles (UAVs) are playing an increasingly critical role in the Intelligence, Surveillance, and Reconnaissance (ISR) missions that take place across complex landscapes around the globe. Whether the ISR mission is a military operation or an effort by border control agents or search-and-rescue teams, UAVs increase the situational awareness that leads to timely and effective decision-making in situations where the stakes are high. What makes uncrewed systems such a crucial tool for achieving an in-field advantage? Developed to carry a wide variety of payloads, UAVs facilitate the gathering and transmission of accurate data to key human actors in real or near-real time for a distinct in-field advantage.

Optical gimbal cameras are often the payload of choice for ISR missions. With a multitude of sensors (color and IR), laser pointers and range finders, geolocation capabilities, image stabilization, optical and digital zoom, and real-time data transmission, these cameras are ideal for a real-time data exchange that provides critical information to decision-makers in the field.  

Automated Tracking to Support the Operator and the Mission

Endurance flight times for small UAV can reach upwards of 20 hours, which means long shifts for the operator to monitor live footage—a mentally taxing endeavor. Two real-time data transmission features that can ease this burden and support those leading the mission are Moving Target Indicator and Object Tracking.

A Moving Target Indicator (MTI) is a comprehensive software function that uses onboarding image processing for data that is transmitted to the ground control station. By clearly differentiating between a moving target and background clutter, MTI provides the human decision-maker with clearer and more actionable intel. When using this feature, the operator is able to select modes such as “large object MTI” or “small object MTI” to more easily spot objects of varying sizes during an ISR mission. In either mode, these objects will not drift out of the UAV’s sights even when the angle or loitering position changes.

Large object MTI specifically helps the operator detect vehicles, drones, planes, and human targets. During a fast-paced mission, this data gives the operator a vital edge. User friendly and quick to respond, large object MTI can be easily switched to “tracking mode” on the indicated object while also continuing to observe and track other moving objects in the frame. This unique ability to toggle between multiple objects allows the operator to focus on the main target without losing coverage on additional moving objects that may provide essential intelligence.

 Small object MTI, on the other hand, assists the operator in challenging environments where the terrain is homogenous (for example, a dense forest), thus making it more difficult for a human operator to detect small or slow-moving targets. This feature automatically extracts valuable intelligence from the video stream in real time, allowing the operator to locate objects in a landscape that is complex or otherwise challenging. Small object MTI helps the operator review images at a much faster rate, allowing for swift yet accurate judgment calls that are crucial to mission success. This feature is especially beneficial in search-and-rescue missions where every passing second could be the difference between life and death. Once the target is located, the operator can zoom in to activate automatic object tracking and relay critical information to the rest of the team.

Whether the ISR  objective is executing military surveillance, locating missing persons during a natural disaster, or monitoring suspicious activity on a national border, payload cameras with Moving Target Indicator and Object Tracking features are not merely the human operator’s “eyes in the sky”—they are an advanced tool that improves situational awareness and accurate data transmission at a speed that can save lives and increase the likelihood of mission success. Edge Autonomy is committed to robust innovations that allow teams to share data and communicate more effectively, thereby improving the outcome of ISR missions in a variety of environments. Interested in the advanced optical gimbal cameras in Edge Autonomy’s Octopus line of ISR systems? Learn more about our cutting-edge solutions here.

Propane fuel cells are ideal for organizations that need more rugged and flexible power options, especially for off-grid use cases. This is because propane fuel cells operate even in the harshest of conditions with little maintenance. And thanks to being a quiet, clean and dependable power solution, propane-powered solid oxide fuel cells work in a wide variety of applications. We recently shared how propane fuel cells work, so today we wanted to dive into how propane fuel cells are being used by customers around the world.

Use Case #1: Rail Signals and Crossings

Billions of dollars’ worth of freight runs along American railways every day. When railways experience power outages, trains can’t run. This can cost carriers millions of dollars for every hour trains sit idle. Not to mention public safety concerns when crossings go dark. Propane fuel cells are used by railways as backup power to prevent these outages. They often replace generators, which are high-maintence, loud, and prone to theft.

Use Case #2: Cathodic Protection

Millions of miles of pipeline around the world distribute critical liquids and gases that people and businesses rely on to conduct essential daily functions. One key threat is corrosion, which can erode the integrity of pipeline and storage tanks. Cathodic portection prevents this via a small electrical current. However, they often require specialized skills and routine monitoring to maintain power. Our Endurance Series E250 product is a propane fuel cell that ensures these systems stay on and remain effective.

Use Case #3: Critical Power Grid Infrastructure

Power insecurity puts millions of people at risk of harm during once-in-a-century weather disasters that grid infrastructure hasn’t been tested against. Unexpected cold in a region like Texas that’s unaccustomed to extreme winter weather can cause wellheads to freeze, stopping the flow of oil that keeps the power grid up. Blackouts can knock power plants offline, crippling water treatment facilities, cellular networks and other critical infrastructure. Adaptive Energy’s fuel cells cycle on and off as needed and are not susceptible to freezing weather, providing a key level of protection needed for emergencies.

Apply for an Opportunity

Name(Required)
Email(Required)
In which country you are interested to work in?(Required)
Please indicate which position you're applying for:
Drop files here or
Max. file size: 50 MB.
    This field is for validation purposes and should be left unchanged.